Geodesic diameter of a polygonal domain in O(n^4 log n) time
نویسندگان
چکیده
We show that the geodesic diameter of a polygonal domain with n vertices can be computed in O(n logn) time by considering O(n) candidate diameter endpoints; the endpoints are a subset of vertices of the overlay of shortest path maps from vertices of the domain.
منابع مشابه
The Geodesic Diameter of Polygonal Domains
This paper studies the geodesic diameter of polygonal domains having h holes and n corners. For simple polygons (i.e., h = 0), it is known that the geodesic diameter is determined by a pair of corners of a given polygon and can be computed in linear time. For general polygonal domains with h ≥ 1, however, no algorithm for computing the geodesic diameter was known prior to this paper. In this pa...
متن کاملComputing the L1 Geodesic Diameter and Center of a Polygonal Domain
For a polygonal domain with h holes and a total of n vertices, we present algorithms that compute the L1 geodesic diameter in O(n2 + h4) time and the L1 geodesic center in O((n4 + n2h4)α(n)) time, respectively, where α(·) denotes the inverse Ackermann function. No algorithms were known for these problems before. For the Euclidean counterpart, the best algorithms compute the geodesic diameter in...
متن کاملComputing the Geodesic Centers of a Polygonal Domain
We present an algorithm that computes the geodesic center of a given polygonal domain. The running time of our algorithm is O(n ) for any > 0, where n is the number of corners of the input polygonal domain. Prior to our work, only the very special case where a simple polygon is given as input has been intensively studied in the 1980s, and an O(n log n)-time algorithm is known by Pollack et al. ...
متن کاملComputing L1 Shortest Paths among Polygonal Obstacles in the Plane
Given a point s and a set of h pairwise disjoint polygonal obstacles of totally n vertices in the plane, we present a new algorithm for building an L1 shortest path map of size O(n) in O(T ) time and O(n) space such that for any query point t, the length of the L1 shortest obstacleavoiding path from s to t can be reported in O(log n) time and the actual shortest path can be found in additional ...
متن کاملOn the Geodesic Diameter in Polygonal Domains∗
A polygonal domain P with n corners V and h holes is a connected polygonal region of genus h whose boundary consists of h + 1 closed chains of n total line segments. The holes and the outer boundary of P are regarded as obstacles. Then, the geodesic distance d(p, q) between any two points p, q in polygonal domain P is defined to be the (Euclidean) length of a shortest obstacle-avoiding path bet...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
- CoRR
دوره abs/1006.1998 شماره
صفحات -
تاریخ انتشار 2010